Author/s:
Bruce, I.; Irlicht, L. S.; White, M.; O'Leary, S. J.; Dynes, S.; Javel, E.; Clark, Graeme M.

Title:
An improved model of electrical stimulation of the auditory nerve

Date:
1997

Citation:

Persistent Link:
http://hdl.handle.net/11343/26964

File Description:
An improved model of electrical stimulation of the auditory nerve

Terms and Conditions:
Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.
ability? Statistical theory indicates that a good measure of the
discriminability of signals is the mean to standard-deviation ratio of
response to the signals, with a higher ratio providing better
discriminability. In this paper, the signal is electrical stimulation of
the scala tympani with bipolar, biphasic current pulses, and the
response is spike activity of individual auditory nerve fibres in the cat.
We analyze experimental measurements of the mean, variance and
standard-deviation of auditory nerve spike activity to a variety of
electric stimulation conditions. In order to explain the mean to
variance relationship, we apply a point process model of neural
factors is reduced, leading to a secondary wave of auditory nerve
degeneration.
Neurotrophins and cytokines are two families of growth factors
reported to have activity in the cochlea. Moreover, it is suggested
that neurotrophins and cytokines act synergistically upon sensory
nerve cells, although the mechanism of this synergistic effect is
unknown. It has, however, been suggested that one of the growth
factors could be involved in the maintenance of basic cellular
metabolic function, while the other could be involved in
differentiation events.

An improved model of electrical stimulation of the auditory nerve

I. BRUCE, L. IRLICH, M. WHITE *,
S. O'LEARY, S. DYNES **, E. JAVEL ***
and G. CLARK

Department of Otolaryngology
The University of Melbourne, Melbourne, VIC (AUS)
* Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC (USA)
** Massachusetts Institute of Technology, Cambridge, MA (USA)
*** Department of Otolaryngology
University of Minnesota, Minneapolis, MN (USA)

SYDNEY '97
XVI World Congress of Otorhinolaryngology
Head and Neck Surgery
Sydney, Australia
2-7 March 1997

SUMMARY

Mathematical models are a useful means of formally describing and
investigating pertinent features of complex systems such as the human
auditory system. These features may be deduced from physiological and
psychophysical experiments utilising animal models or humans, and from
engineering studies. Historically, models of the auditory nerve's (AN)
response to electrical stimulation have ignored randomness in single-fiber
activity which has been recorded in physiological studies. These models,
however, have been unable to accurately predict a number of important
psychophysical phenomena. In this study, a model that incorporates
random activity of the AN is presented, and is shown to predict
psychophysical performance. These results indicate that random activity
is indeed an important part of the response of the AN to electrical
stimulation.

SYDNEY '97
XVI World Congress of Otorhinolaryngology
Head and Neck Surgery
Sydney, Australia
2-7 March 1997

SUMMARY

Mathematical models are a useful means of formally describing and
investigating pertinent features of complex systems such as the human
auditory system. These features may be deduced from physiological and
psychophysical experiments utilising animal models or humans, and from
engineering studies. Historically, models of the auditory nerve's (AN)
response to electrical stimulation have ignored randomness in single-fiber
activity which has been recorded in physiological studies. These models,
however, have been unable to accurately predict a number of important
psychophysical phenomena. In this study, a model that incorporates
random activity of the AN is presented, and is shown to predict
psychophysical performance. These results indicate that random activity
is indeed an important part of the response of the AN to electrical
stimulation.

Neurotrophins and cytokines are two families of growth factors
reported to have activity in the cochlea. Moreover, it is suggested
that neurotrophins and cytokines act synergistically upon sensory
nerve cells, although the mechanism of this synergistic effect is
unknown. It has, however, been suggested that one of the growth
factors could be involved in the maintenance of basic cellular
metabolic function, while the other could be involved in
differentiation events.

Neurotrophins and cytokines are two families of growth factors
reported to have activity in the cochlea. Moreover, it is suggested
that neurotrophins and cytokines act synergistically upon sensory
nerve cells, although the mechanism of this synergistic effect is
unknown. It has, however, been suggested that one of the growth
factors could be involved in the maintenance of basic cellular
metabolic function, while the other could be involved in
differentiation events.
INTRODUCTION

The AN response to electrical stimulation has been modeled historically using deterministic (non-random) descriptions. These models predict that, for stimulus amplitudes above threshold, single bi-phasic current pulses will produce an action potential in response to every pulse. This behavior can be described by a step-shaped input/output (I/O) function for probability versus intensity. Considering results from physiological studies, however, the auditory nerve I/O functions are better fit by an integrated-Gaussian "Error Function" (ERF) (Verveen, 1960), rather than a step function. Step-function and integrated-Gaussian fits to AN data from cat (Javel et al., 1987) are shown in Figure 1. The slope, or dynamic range, is determined primarily the diameter of the fiber (Verveen, 1962) and by the pulse-width (see Figure 2).

MATERIALS AND METHODS

Auditory nerve and psychophysical data were evaluated using the model shown in Figure 3. The model includes current spread which is dependent on the electrode configuration, I/O functions for each AN fiber, and a psychophysical model of loudness. In the neural section of the model, the distribution of single-pulse I/O functions is set to approximate that seen in the cat data (Javel et al., 1987) and to change with pulse-
ability? Statistical theory indicates that a good measure of the discriminability of signals is the mean to standard-deviation ratio of response to the signals, with a higher ratio providing better discriminability. In this paper, the signal is electrical stimulation of the scala tympani with bipolar, biphasic current pulses, and the response is spike activity of individual auditory nerve fibres in the cat. We analyze experimental measurements of the mean, variance and standard-deviation of auditory nerve spike activity to a variety of electric stimulation conditions. In order to explain the mean to variance relationship, we apply a point process model of neural widths as shown in Figure 2 (Dynes, unpublished). Both step-shaped and integrated-Gaussian functions are fitted in order to compare the model's behavior when stochastic activity is included or omitted. From the single-pulse response properties, each fiber's response to specific pulse-trains can be predicted. The output of the neural section of the model is then a set of response probabilities.

![Figure 2](image_url)

Fig. 2 Mean integrated-Gaussian fits to cat data for pulse-widths of 100 (solid line), 500 (dot-dashed line), 2000 (dashed line) and 5000 (dotted line) μsec/phase.

![Figure 3](image_url)

Fig. 3. The cochlear neural/psychophysical model.

Neurotrophins and cytokines are two families of growth factors reported to have activity in the cochlea. Moreover, it is suggested that neurotrophins and cytokines act synergistically upon sensory nerve cells, although the mechanism of this synergistic effect is unknown. It has, however, been suggested that one of the growth factors could be involved in the maintenance of basic cellular metabolic function, while the other could be involved in differentiation events.

SYDNEY '97

XVI World Congress of Otorhinolaryngology

Head and Neck Surgery

Sydney, Australia

2-7 March 1997

AN AND CHANGES IN THE CULTURE OF COCHLEAR NEURONES

Insauti, N. Pérez

We are conducting a research project with these two goals: 1) the cochlear nucleus (CN) and 2) analyse the effects of LIF on the cochlea Nucleus (CN) and its architecture of the CN and its changes carried out in a control Group B, a bilateral nerves was performed to show the effectiveness of the auditory nerve SN after sectioned orthogonal to 10 μm. Control cases were: primary afferent projection ally perfused with 4% formaldehyde against (SMI-32) to show acid protein (GFAP) as an and immunohistochemical anti-albumin and Calbindin. of the acoustic nerve were the immunohistochemical reaction of the discrete surrounding astrocytic population. There is a profound loss of the stained neurons, a
A simple counting model is assumed for the psychophysical section of the model. The mean and variance of the AN response to a particular electrical stimulus is predicted by calculating spatial and temporal integration of the single fiber response probabilities. The probability distribution is approximated very well by a Poisson distribution for a mean number of actions potentials less than ten and by a Normal distribution for mean counts greater than ten. Signal detection theory is used to predict the model's performance for specific detection/estimation tasks, such as threshold, intensity difference limens and dynamic range.

RESULTS AND CONCLUSIONS

We have used this model to investigate a number of different psychophysical phenomena. In the cases examined so far, the prediction of the perceptual performance of cochlear implant users is significantly better when stochastic activity is included in the neural section of the model, compared to when it is omitted.

One example is the prediction of auditory threshold versus pulse-width for single bi-phasic pulses. In Figure 4(a) physiological and auditory thresholds are compared. The single-fiber thresholds are significantly higher than the auditory thresholds with which they are compared, and do not change as sharply with pulse-width. The measurement of the physiological thresholds was conducted using a deterministic AN response. In Figure 4(b), the model's prediction of auditory threshold is displayed. The deterministic version of the model predicts an auditory threshold which is very similar in slope and relative position to this physiologic data. The range of physiological thresholds can be explained by the variance in single-fiber thresholds and by the uncertainty of placing "threshold" on the I/O curve, that is, by assuming a Pr of .05, or 1.0 or some value between the two. The stochastic version of the model, in comparison, accurately predicts the slope and relative position of the auditory threshold curves collected from subjects using cochlear implants. Furthermore, the range of auditory thresholds is well explained by considering the effect of the mode of stimulation (bipolar vs. monopolar).

The results obtained with this model have a number of important consequences for investigation of neural sound coding, for physiological studies and for speech processing strategies. This study indicates that stochastic activity should be included in models of electrical stimulation of the AN. This will have a significant effect on the spatio-temporal patterns of response expected from AN and on the quality and quantity of information coded by these patterns. Additionally, a preliminary investigation of temporal frequency coding has revealed that the discrepancy between physiological data and the auditory percept related to the electrical stimulation rate could be explained by stochastic components of the neural firing patterns.

A simple "threshold" measurement is not a sufficient description of neural response to electrical stimulation, but rather an I/O function describing the neuron's response is required. Secondly, physiological
ability? Statistical theory indicates that a good measure of the discriminability of signals is the mean to standard-deviation ratio of response to the signals, with a higher ratio providing better discriminability. In this paper, the signal is electrical stimulation of the scala tympani with bipolar, biphasic current pulses, and the response is spike activity of individual auditory nerve fibres in the cat. We analyze experimental measurements of the mean, variance and standard-deviation of auditory nerve spike activity to a variety of electric stimulation conditions. In order to explain the mean to variance relationship, we apply a point process model of neural factors is reduced, leading to a secondary wave of auditory nerve degeneration.

Neurotrophins and cytokines are two families of growth factors reported to have activity in the cochlea. Moreover, it is suggested that neurotrophins and cytokines act synergistically upon sensory nerve cells, although the mechanism of this synergistic effect is unknown. It has, however, been suggested that one of the growth factors could be involved in the maintenance of basic cellular metabolic function, while the other could be involved in differentiation events.

Safety studies have usually been conducted at stimulus levels above the single-fiber "threshold". From Figure 4 it can be seen that these stimulus levels could be considerably above the normal operating range of cochlear implants and that levels used routinely in cochlear implants are more...

Fig. 4. Comparison of physiological and auditory threshold versus pulse-width with predictions of auditory threshold versus pulse-width by deterministic and stochastic models.

(a) Physiological and psychophysical threshold from (Plagst et al., 1991)

(b) Prediction of auditory threshold versus pulse-width by the deterministic model - threshold at 0.5 (dotted line) and 1.0 (dashed line) firing probability; and by the stochastic model - bipolar (dot-dashed line) and monopolar (solid line) stimulation.

SYDNEY '97
XVI World Congress of Otorhinolaryngology
Head and Neck Surgery
Sydney, Australia
2-7 March 1997

In the current design of the cochlear nucleus (CN), Group B, a bilateral cochlear nerve was performed to the monkey. We present the results concerning the first stage of cochlear neurones cultures are being used to h factors on the process of ve cells, in order to find could be applied to maintain...
with developments in cochlear implant technology, speech processing strategies are now using higher stimulation rates than had been previously possible. Some concern has been expressed that AN fibers will be driven beyond their normal physiological discharge rates by such high-rate stimulation. This study suggests, in contrast, that high-rate stimulation does not necessarily produce high discharge-rates. Over most of the operating range of cochlear implants the majority of AN fibers will have a relatively small probability of responding to each pulse in a pulse-train, and will therefore only fire at a fraction of the stimulation rate.

In conclusion, this study has found that stochastic models are needed to describe some aspects of neural response; inclusion of stochastic behavior in neural models can better predict a number of psychophysical results; and the presence of stochastic activity in AN response to electrical stimulation has implications for many areas of cochlear implant research.

REFERENCES

