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A novel architecture and set of learning rules for cortical self-organization
is proposed. The model is based on the idea that multiple information
channels can modulate one another’s plasticity. Features learned from
bottom-up information sources can thus be influenced by those learned
from contextual pathways, and vice versa. A maximum likelihood cost
function allows this scheme to be implemented in a biologically feasible,
hierarchical neural circuit. In simulations of the model, we first demon-
strate the utility of temporal context in modulating plasticity. The model
learns a representation that categorizes people’s faces according to iden-
tity, independent of viewpoint, by taking advantage of the temporal con-
tinuity in image sequences. In a second set of simulations, we add plas-
ticity to the contextual stream and explore variations in the architecture.
In this case, the model learns a two-tiered representation, starting with a
coarse view-based clustering and proceeding to a finer clustering of more
specific stimulus features. This model provides a tenable account of how
people may perform 3D object recognition in a hierarchical, bottom-up
fashion.

1 Introduction: Context, Coherence, and Plasticity

Context effects, both spatiotemporal and top-down, are ubiquitous in be-
havior and can also be observed at the neuronal level. The ability of context
to influence perception has been demonstrated in many domains. For ex-
ample, letters are recognized more quickly and accurately in the context of
words (see, e.g., McClelland & Rumelhart, 1981), and words are recognized
more efficiently when preceded by related isolated words (see, e.g., Neely,
1991), sentences, or passages (Hess, Foss, & Carroll, 1995). In the compelling
McGurk effect (McGurk & MacDonald, 1976; MacDonald & McGurk, 1978),
a person is presented with a videotape of auditory information for one utter-
ance simultaneously paired with visual information for another utterance.
However, the mismatch typically goes unnoticed. What happens is that for
some sound pairs, the person’s percept tends to be dominated by the audi-
tory cues, in other cases the visual cues dominate, and in still other cases,
various fusions and alternations of the two sources are perceived. Appar-
ently when the two modalities provide contradictory information, people
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choose which modality to believe and which to ignore, or whether to fuse
the modalities, according to the context.

The importance of contextual information in modulating neuronal re-
sponse profiles is becoming increasingly apparent. For example, some vi-
sual cortical cells (in the deepest layer of area V1) have been found that are
excited by an oriented stimulus in the center of their receptive field and show
an enhanced response to a similarly oriented stimulus in the surrounding
region; on the other hand, the response is suppressed by an orthogonally
oriented stimulus in the surround (Cudeiro & Sillito, 1996). In contrast,
some cells show just the opposite pattern: they are antagonized by a simi-
larly oriented stimulus in the surround, and facilitated by an orthogonally
oriented stimulus (Sillito, Grieve, Jones, Cudeiro, & Davis, 1995). On the
other hand, about 40% of complex cells (in the superficial layers of area V1)
are facilitated by the conjunction of a line segment in their classical recep-
tive field and a colinear line segment placed nearby, outside their classical
receptive field (Gilbert, Das, Ito, Kapadia, & Westheimer, 1996). Moreover,
even in primary visual cortex, cells’ tuning curves (in all cortical layers) are
sensitive to the temporal history of the input signal and can show bimodal
peaks and even complete reversals in tuning over time (Ringach, Hawken,
& Shapley, 1997). These examples demonstrate that neuronal responses can
be modulated by secondary sources of information in complex ways.

Why would contextual modulation be such a pervasive phenomenon?
One obvious reason is that if context can influence processing, it can help
in disambiguating or cleaning up noisy stimuli. However, an overreliance
on contextual cues leaves the system open to the possibility of information
loss, for example, by smearing information across discontinuities. A less
obvious reason that context is so pervasive may be that if context can influ-
ence learning, it may lead to more compact and powerful representations,
whereby units encode complex stimulus configurations.

In this article, we focus particularly on temporal context. Most unsuper-
vised classifiers are insensitive to temporal context; that is, they group pat-
terns together solely on the basis of spatial overlap. This may be reasonable if
there is very little shift or other form of distortion between one time step and
the next, but it is not a reasonable assumption about the sensory input to the
cortex. Precortical stages of sensory processing, certainly in the visual sys-
tem and probably in other modalities, tend to remove low-order correlations
in space and time (see, e.g., Dong & Atick’s, 1995, model of lateral geniculate
nucleus cells). Consider the images in Figure 1. The top row shows a series
of snapshots of one person’s face being rotated through 180 degrees. The
bottom row shows a series of snapshots of another person’s face, also being
rotated through 180 degrees. They have been preprocessed by a simple edge
filter, so that successive views of the same face have relatively little pixel
overlap. Even in these low-resolution images, we can see certain regularities
in the features of each individual. For example, each person’s head shape
remains consistent across changes in viewpoint. With respect to raw pixel
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Figure 1: Two sequences of 48 × 48 pixel images digitized with an IndyCam
and preprocessed with an edge filter using SGI’s Image Works. Eleven views of
each of 4 to 10 faces were used in the simulations reported here. The alternate
(odd) views of 2 of the faces are shown above.

overlap, however, two snapshots of a given individual’s face taken from
very different viewpoints often have less in common than snapshots of two
different individuals’ faces taken from the same viewpoint. This creates a
difficult challenge for unsupervised learning systems. Unsupervised learn-
ing procedures like principal component analysis and clustering can model
only lower-order structure (e.g., covariance or Euclidean proximity). How
could a self-organizing system discover the higher-order structure shared
by radically different views of the same object, and ignore the lower-order
structure shared by identical views of different objects? Clearly we have
a long way to go in understanding what sort of learning procedures are
employed by the brain, to form distributed representations and account for
our high-level perceptual abilities.

One powerful cue for real vision systems is the temporal continuity of
objects. Novel objects typically are encountered from a variety of angles,
as the position and orientation of the observer, or objects, or both, vary
smoothly over time. It would be very surprising if the visual system did
not capitalize on this temporal continuity in learning to group together
visual events that co-occur in time. In section 7, we mention several lines of
empirical evidence in support of this notion. In the model of cortical self-
organization proposed here, we postulate that contextual modulation plays
a critical role in guiding unsupervised class formation. The term context is
used very generally here to mean any secondary source of input; it could
be from a different sensory modality, a different input channel within the
same modality, a temporal history of the input, or top-down information
from descending pathways. Although in the simulations reported here we
specifically focus on temporal context in the visual system, the same ideas
should be applicable to a variety of other sources of context in a variety of
cortical areas.
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2 Maximum Likelihood Cost Function

Given that we have identified context as an important cue in learning, the
next step is to formalize this notion. We propose maximizing a log-likelihood
cost function, as in Nowlan (1990) and Jacobs, Jordan, Nowlan, and Hinton
(1991). In this framework, the network is viewed as a probabilistic, gener-
ative model of the data. The learning serves to adjust the weights so as to
maximize the log-likelihood of the model having generated the data:

L = log P(data | model). (2.1)

If the training patterns, I(α), are independent,

L = log
n∏
α=1

P(I(α) | model)

=
n∑
α=1

log P(I(α) | model). (2.2)

However, this assumption of independence is not valid under natural view-
ing conditions. If one view of an object is encountered, a similar view of the
same object is likely to be encountered next. In this article, we propose an
extension to the above model in which the independence assumption is
relaxed, so that the inputs are only assumed to be independent given the
context. In the most general case, the context could be any additional source
of information. In the simulations reported here, we explore the special case
where the temporal history of the input acts as the context.

There are several advantages to this approach. First, having a global cost
function for the learning provides a principled basis for deriving learning
rules in a network. Second, the maximum likelihood cost function sets up
a very reasonable goal for the learning: modeling the probability distribu-
tion of the data. Third, by choosing an appropriate parametric form for the
model, that is, the network architecture and associated statistical assump-
tions, we can incorporate the added goal of allowing contextual input to
modulate the learning.

2.1 Maximum Likelihood Competitive Learning. In maximum likeli-
hood competitive learning (MLCL) (Nowlan, 1990), the units have gaussian
activations, yi, and the network forms a mixture-of-gaussians model of the
data. The result is a simple and elegant network implementation of a widely
used statistical clustering algorithm. A “soft competition” among the units,
rather than a winner-take-all, “hard competition,” determines the relative
activation levels of the units and hence their learning rates for each pattern.
This causes each unit to become selective for a different region of the input
space.
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The following cost function forms the basis for MLCL,

L =
n∑
α=1

log

[
m∑

i=1

P(I(α) | submodeli) P(submodeli)

]

=
n∑
α=1

log

[
m∑

i=1

yi
(α) πi

]
, (2.3)

where the πis are positive mixing coefficients that sum to one, and the yis
are the unit activations,

yi
(α) = N(EI(α), Ewi, 6i), (2.4)

where N() is the gaussian density function, with mean Ewi and covariance
matrix 6i. Here and throughout the article, we use the term submodel to
refer to a gaussian component in the mixture model. So yi represents the
probability of the input vector under the ith submodel, a gaussian centered
on the ith unit’s weight vector, Ewi. The ith mixing coefficient, πi, represents
the prior probability of the ith gaussian having generated the data. In MLCL,
the gaussian means, Ewi, are obtained by maximizing over L, and the mixing
coefficients are either fixed to equal values or alternatingly reestimated after
each update of the model parameters as in the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). For simplicity, Nowlan
typically used a single global variance parameter for all input dimensions
and allowed it to shrink during learning. L can be maximized by on-line
gradient ascent1 with learning rate ε:

1wij = ε ∂L
∂wij
= ε

∑
α

πi yi
(α)∑

k πk yk
(α)

(
Ij
(α) − wij

)
. (2.5)

The term

πiyi
(α)∑

k πkyk
(α)

represents the ith submodel’s probability given the current pattern and con-
text. It is normalized over all competing units (submodels), hence the term
soft competition. A long-time average of this probability over many data
items represents πi, the overall probability of the ith submodel. Thus, this
rule is quite biologically plausible. It consists of a Hebbian update rule with
weight decay, using normalized postsynaptic unit activations.

1 Nowlan (1990) used a slightly different on-line weight update rule that more closely
approximates the batch update rule of the EM algorithm.
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2.2 Contextually Modulated Competitive Learning. MLCL assumes
that the input patterns are independent. If we remove this restriction, allow-
ing for temporal dependencies among the input patterns, the log-likelihood
function becomes:

L = log P(data | model)

=
∑
α

log P(I(α) | I(1), . . . , I(α−1),model). (2.6)

To incorporate a contextual information source into the learning equation,
we extend MLCL by introducing a contextual input stream into the likeli-
hood function:

L = log P(data | model, context)

=
∑
α

log P(I(α) | I(1), . . . , I(α−1),model, context). (2.7)

Unlike the model underlying standard MLCL, we want to deal with input
streams that may contain arbitrarily complex temporal dependencies. Sup-
pose the input and context represent two separate streams of observable
data, with unknown interdependencies. This situation is depicted in Fig-
ure 2a. Taken together, the input and context can be viewed as an ordered
sequence of pairs, (I(α),C(α)), where C(α) is the contextual input pattern on
training case α.

We now consider several simplifying assumptions that result in a tractable
model. Our first assumption is that the model consists of a mixture of sub-
models. The log-likelihood then becomes:

L =
∑
α

log

∑
j

P(I(α) | I(1), . . . , I(α−1),C(1), . . . ,C(α), submodelj)

P(submodelj | I(1), . . . , I(α−1),C(1), . . . ,C(α))
]
. (2.8)

Second, let us assume that the probability of observing a particular input
pattern is independent of other patterns when conditioned on the context
sequence, and vice versa. In other words, all of the temporal dependencies
in the input stream can be accounted for by knowing the context, and vice
versa. This situation is depicted in Figure 2b. Now we have:

L =
∑
α

log

∑
j

P(I(α) | C(1), . . . ,C(α), submodelj)

P(submodelj | I(1), . . . , I(α−1),C(1), . . . ,C(α))
]
. (2.9)
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Figure 2: The conditional dependencies among the observable variables (con-
text and input) are depicted in three situations. (a) The long-range dependencies
within the two sequences. (b) The interdependencies within the two sequences
disappear when each element in the top sequence is conditioned on the bottom
sequence, and vice versa. (c) The sequences become independent of each other
when conditioned on the hidden variables (the “submodel” index).

Finally, let us assume that given the submodel, the input and context
are independent. In other words, all the remaining dependencies in the
observable data are explained away by knowing which submodel generated
the data at each point in time. This situation is depicted in Figure 2c. Now
the likelihood equation simplifies to:

L =
∑
α

log

[∑
j

P(I(α) | submodelj)

P(submodelj | I(1), . . . , I(α−1),C(1), . . . ,C(α))

]

=
n∑
α=1

log

∑
j

yj
(α) gj

(α)

 , (2.10)

where gj
(α) represents the probability of the jth submodel given the input

and context, and yj
(α) represents the probability of the input under the jth

submodel.
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Figure 3: A neural circuit for implementing CMCL.

3 Network Implementation

The contextually modulated competitive learning (CMCL) cost function
given in equation 2.10 could be implemented in a variety of architectures,
depending on how much computational power is allocated to individual
units. In section 7, we explore this issue further and consider the potential
advantage of more powerful units with nonlinear synaptic interactions. In
the simulations reported here, we used multilayer circuits consisting of an
input layer, a layer of clustering units, and a layer of gating units, as in
Figure 3. We chose the term gating units because their role here is analo-
gous to that of the gating network in the competing experts model (Jacobs
et al., 1991). In fact, the model proposed here could be viewed as an unsu-
pervised version of the mixture of competing experts architecture. Jacobs
et al.’s competing experts network performs supervised learning and can
be interpreted as fitting a mixture of gaussians model of the training signal.
In contrast, the clustering units (experts) here are fitting a mixture model
to the input signal, while the gating units simultaneously are adapting to
the context signal, in order to help the clustering units divide up the input
space. This is very different from a model that separately clusters the input
and context signals because contextual features are used here to modulate
the partitioning of the input space. As our simulations show, this results in
a very different clustering of the inputs.

The clustering units receive the primary source of input to the network.
As in MLCL, each clustering unit produces an output yi

(α) proportional
to the probability of the input pattern, I(α), given the ith submodel (this
would be exactly equal to the probability if it were normalized). Each yi

(α)

is computed as a gaussian function of its current input,

yi
(α) = e−‖I

(α)− Ewi‖2/σ 2
i , (3.1)

where ‖ · ‖ is the L2 norm, Ewi is the weight vector for the ith clustering
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unit representing the mean of the ith gaussian, and σ 2
i is the variance of

that gaussian, assuming all gaussians are spherical. The gating units receive
the contextual stream of input and produce outputs gi

(α) representing the
probability of the ith submodel given the current context, C(α). For the sim-
ulations reported here, the gating units compute their outputs according to
a “softmax function” (Bridle, 1990) of their weighted summed inputs xi

(α):

gi
(α) = exi

(α)∑
j exj

(α)
, (3.2)

xi
(α) =

∑
k

Ck
(α) vik, (3.3)

where j indexes over all gating units in the network, and vik is the weight
on the connection from the kth contextual input to the ith gating unit. Here,
we have made a further simplifying assumption that the prior probabilities
of the submodels (the p(submodeli) terms in equation 2.10) are all equal
and fixed and can therefore be folded into the gating units’ activations gi.
Alternatively, assuming the probabilities of choosing each submodel form
a Markov chain—that is, they depend on knowledge only one step back in
time—one could then estimate the true probabilities of submodels under a
hidden Markov model (HMM) (as suggested by Hinton, personal commu-
nication). This would allow for temporal dependencies between the sub-
models over time to be modeled explicitly. Cacciatore and Nowlan (1994)
have extended the mixture of competing experts model in this way, to al-
low recurrent gating networks. (See section 7 for further comments on the
relation between HMMs and our model.)

4 The Learning Equations

Given the likelihood function defined by equation 2.10, on-line learning
rules for the clustering and gating units can be derived by differentiating
L with respect to their weights. The variances of each of the gaussians, σ 2

i ,
could be approximated by their maximum likelihood estimates under a
mixture model, as in the EM algorithm (Dempster et al., 1977). Instead, we
used a simple on-line approximation to the true variance of the input vector
about each clustering unit’s weight vector,

σi
2(α) = k

∑
j

(
w2

ij + (I(α)j)2
)
, (4.1)

where k is a constant. This approximation would be exact, to within a con-
stant factor, if the input vectors were of fixed length and uncorrelated with
the weight vectors. In the first set of simulations reported here, k = 0.05,
and in the second set, k = 0.03. The main role of the adaptive variance in



356 Suzanna Becker

the learning is to scale the clustering unit activations, to prevent them from
overfitting the training patterns.

The learning rule for the weight from the jth input to the ith clustering
unit for input pattern α is:

1wij = ε ∂L
∂yi(α)

∂yi
(α)

∂wij

= ε gi
(α) yi

(α)∑
k gk

(α) yk
(α)

1

σi2
(α)

(
Ij
(α) − wij+wij

‖ I(α) −wi ‖2∑
k(Ik

(α))2 + wik
2

)
, (4.2)

where ε is a learning-rate constant.
The learning rule for the weight from the jth contextual input to the ith

gating unit for input pattern α is:

1vij = ε ∂L
∂gi(α)

∂gi
(α)

∂vij

= ε
(

gi
(α) yi

(α)∑
k gk

(α) yk
(α)
− gi

(α)

)
Ij
(α). (4.3)

As a consequence of the multiplicative interaction between the gating
and clustering units’ activations in the cost function (see equation 2.10),
each gating unit’s activation modulates the corresponding clustering unit’s
learning. Thus, the clustering units are encouraged to discover features that
agree with the current contextual gating signal (and vice versa). At any
given moment in time, if their contextual gating signal is weak or if they fail
to capture enough activation from their bottom-up input, they will do very
little learning. Only when a clustering unit’s weight vector is sufficiently
close to the current input vector and its corresponding gating unit is strongly
active will it do substantial learning.

5 Simulations with Network 1

Our first set of simulations was designed to demonstrate the utility of tempo-
ral context in contributing to higher-order feature extraction and viewpoint-
invariant object recognition. For these simulations, the gating connection
weights were held fixed. Our second set of simulations was designed to
generalize these findings to a network with adaptive links in the gating
layer and to show that by varying the architectural constraints, the network
could develop pose-tuned rather than viewpoint-invariant face-tuned units.

For our first set of simulations, we used networks of the form shown in
Figure 4. The network is subdivided into modules, each consisting of one
or more clustering units and one gating unit. In our second set of simula-
tions, modules contain multiple gating units and only one clustering unit.
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The contextual inputs are time-delayed, temporally blurred versions of the
outputs of a module (including both gating and clustering units’ outputs).
The gating units’ outputs are softmax functions of their weighted summed
blurred inputs. The temporal blurring on the contextual input lines was
achieved by accumulating the activation on each connection as follows:

Ci
(α) = 0.5(Ci

(α−1) + inputi
(α−1)), (5.1)

where inputi
(α) is the ith input to the gating unit before blurring for pattern

α; this input could be equal to the output of either a clustering unit in
the layer below or the gating unit itself (see Figure 4). More general forms
of context are possible, as noted in section 7. We have deviated from the
general form of the architecture shown in Figure 3 in an important way:
There is now a many-to-one mapping from clustering units to gating units,
so that clustering units within the same module i receive a shared gating
signal, gi, and produce outputs yij. Thus, clustering units in the same module
are responsible for learning different submodels, but they predict the same
contextual feature. The likelihood equation now becomes:

L =
n∑
α=1

log

 m∑
i=1

g(α)i
1
l

l∑
j=1

yij
(α)

 . (5.2)

To relate this to the original mixture model given by equation 2.10, we still
have a single mixture of gaussian submodels, with each clustering unit cor-
responding to a submodel. However, the probabilities over submodels (the
gis) given the inputs and contexts have some equality constraints imposed,
so that clustering units in the same module share the same submodel prob-
ability.

One might predict that clustering units with a shared source of contextual
input would all come to detect exactly the same feature. Fortunately, there
is a disincentive for them to do so: They would then do poorly at modeling
the input. Thus, clustering units in the same module should come to encode
a common part of the context but detect different features.

Our network architecture was designed with several goals in mind. First,
the modular, layered architecture is meant to constrain the network to de-
velop hierarchical representations and functional modularity, as observed in
the cortical laminae and columns respectively (see, e.g., Calvin, 1995). That
is, we should see a progression from simple to higher-order features in the
clustering and gating layers, with functional groupings of similar features
in units within the same module. Second, we expect the temporal context to
influence the sort of features learned by the clustering layer; each clustering
unit should detect a different range of temporally correlated features.

To test the predictions of our model, we performed simulations with net-
works like the one shown in Figure 4 trained on sequences of patterns like
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Figure 4: The architecture used in the first set of simulations reported here. The
gating units received all their inputs across unit delay lines with fixed weights
of 1.0. For these simulations, some of the networks had an architecture with 4
modules exactly as shown here and were trained on sequences of images of 4
individuals’ faces. For the remaining simulations, the networks had 10 modules
like the ones shown above and were trained on sequences of 10 individuals’
faces.

the ones shown in Figure 1. The training patterns consisted of a set of image
sequences of 10 centered, gradually rotating faces. In our first set of simula-
tions, there were 4 modules, and only 4 of the 10 faces were used; in the final
simulations, the generality of our findings was extended by training a larger
network of 10 modules like the ones shown in Figure 4 on all 10 faces. In both
cases, there were three clustering units per module. It was predicted that the
clustering units should discover “features” such as temporally correlated
views of specific faces. Further, different views of the same face should be
represented by different clustering units within the same module because
they will be observed in the same temporal context, while the gating units
should respond to particular individuals’ faces, independent of viewpoint.

The training and testing pattern sets were created by repeatedly visiting
each of the 10 faces in random order. For each face, an ordered sequence
of views was presented to the network by randomly choosing either a left-
facing or right-facing view as the initial view in the sequence, and then
presenting the remaining views of that face in an ordered sequence. For a
given face sequence, views were presented in an ascending order and then
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a descending order (e.g., rotating through 180 degrees to the right and then
to the left), so the initial view was always the final view in each sequence. At
the end of each face sequence, a new face and starting view were randomly
selected. The network had no knowledge of when a new face would occur or
that the training set actually contained ordered sequences. Thus, although
the network assumes that temporal context is smooth everywhere, in these
data, it is actually discontinuous across the boundaries between sequences.

Gating units had self-links, as well as links from all the clustering units
within the same module, all of which had unit time delays. All the gating
unit connections had fixed weights of 1.0. Thus, each gating unit received a
temporal history of its own output and the outputs of the clustering units
in the same module.

Tuning curves for all units in the network in a typical run are plotted
in Figures 5 and 6. The clustering units became specialized for detecting
particular faces in a narrow range of views, as shown in Figure 5. Simply by
accumulating a temporal history of the clustering units’ activations within
a module, each gating unit was then able to respond to an individual face,
independent of viewpoint, as shown in Figure 6. Of course, the tuning curves
for the gating layer shown here depend on there being continuity in the
context signal during both training and testing.

One might wonder how much of the network’s ability to discriminate
faces was due to the temporal context, and how much to unsupervised clus-
tering, independent of the contextual modulation. To answer this question,
the baseline effect of the temporal context on clustering performance was
assessed by comparing the network shown in Figure 4 to the same network
with all connections into the gating layer removed. The latter is equivalent
to MLCL with fixed, equal mixing proportions (πi). First, networks with four
modules were trained on sequences of four faces. To quantify clustering per-
formance, each unit was assigned to predict the face class for which it most
frequently won (was the most active). Then for each pattern, the layer’s ac-
tivity vector was counted as correct if the winner correctly predicted the face
identity. Generalization performance was assessed by training the network
on only the odd-numbered views and testing classification performance on
the even-numbered views.

The results are summarized in Table 1. As one would expect, the tem-
poral context provides incentive for the clustering units to group succes-
sive instances of the same face together, and the gating layer can there-
fore do very well at classifying the faces with a much smaller number of
units—independent of viewpoint. In contrast, the clustering units without
the contextual signal are more likely to group together instances of different
people’s faces.

Next, a network like the one shown in Figure 4 but with 10 modules
was presented with a set of 10 faces, 11 views each. As before, the odd-
numbered views were used for training and the even-numbered views for
testing. Without the influence of the context layer, the network’s classifica-
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Figure 5: Thirty clustering units’ normalized activations are plotted against face
identity (bottom left axis) and viewing angle (bottom right axis) of patterns.
Each graph shows the activations of a single unit over the entire set of training
patterns. Units in the same row were trained with a common contextual gating
signal (see Figure 4) and have learned to respond to different views of the same
face.
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Figure 6: Ten gating units’ activations are plotted against face identity (bottom
left axis) and viewing angle (bottom right axis) of the training patterns. Each
graph shows the activations of a single unit over the entire set of training pat-
terns. Each gating unit provided a contextual gating signal to three clustering
units (see Figure 4) and learned to respond to a single face, independent of view.
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Table 1: Mean Percentage (and Standard Error) Correctly Clas-
sified Faces.

Train Test

No context, 4 faces Layer 1 59.2 (2.4) 65.0 (3.5)
No context, 10 faces Layer 1 15.0 (0.0) 12.0 (0.0)
Context, 4 faces Layer 1 88.4 (3.9) 74.5 (4.2)

Layer 2 88.8 (4.0) 72.7 (4.8)
Context, 10 faces Layer 1 96.3 (1.2) 71.0 (3.0)

Layer 2 91.8 (2.4) 70.2 (4.3)

Note: Ten runs, for unsupervised clustering networks trained for 2000
iterations with a learning rate of 0.5, with and without temporal context.
Layer 1: clustering units. Layer 2: gating units.

tion performance was very poor. With the addition of contextual modula-
tion, this network still had difficulty classifying all 10 faces correctly and
seemed to be somewhat more sensitive to the weights on the gating con-
nections. However, when the weights on the self-pointing connections on
the gating units were increased from 1.0 to 3.0, to increase the time constant
of temporal averaging, the network performed extremely well. On average,
the top-layer units achieved 96% correct classification on the training set
and 70% correct on the test set. In further simulations, reported in Becker
(1997), the generalization performance of the unsupervised network was
shown to be substantially superior to that of supervised backpropagation
networks with similar architectures; however, when a temporal smoothness
constraint was imposed on the hidden-layer units’ states, even feedforward
backpropagation networks performed as well as our unsupervised model.

6 Simulations with Network 2

The network shown in Figure 4 learned a “grandmother cell” representa-
tion, where each clustering unit learned to specialize for a single face at a
particular viewpoint, and each gating unit therefore responded to a single
face over a wide range of viewpoints. Although “face cells” have been iden-
tified by many laboratories (Gross, Rocha-Miranda, & Bender, 1971; Perrett,
Rolls, & Cann, 1982; Desimone, Albright, Gross, & Bruce, 1984; Yamane,
Kaji, & Kawana, 1988; Tanaka, Saito, Fukada, & Moriya, 1991), these cells
only rarely exhibit either viewpoint invariance or selectivity for a single in-
dividual; the vast majority of face cells are tuned to one of only four views
(front, back, left and right) and respond roughly equally to the heads of
different individuals (Perrett, Hietanen, Oram, & Benson, 1992).

There are several reasons that it is unlikely that the brain uses a grand-
mother cell representation as a matter of course. For one, it is very expensive
with respect to neural machinery. Further, it does not scale well; each time
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a new face is encountered, new representational units would need to be
added. Finally, this type of representation exhibits poor generalization.

In our second set of simulations, we sought to explore the interaction
between the architecture and the cost function in constraining the represen-
tation learned by the network. This time, we used the architecture shown in
Figure 7. This network differs from the one used in the first set of simulations
in two important ways, chosen to encourage more distributed representa-
tions of faces. First, the network has fewer modules than the previous one:
only three modules were trained to encode all 10 faces. Now the network
must form a more compact encoding of the face stimuli. Second, there is
now only one clustering unit per module, and there are multiple gating
units per module (four per module in the simulations reported here). Thus,
rather than a many-to-one relationship between clustering and gating units
in each model, the relationship is one-to-many. The clustering units should
therefore be encouraged to develop broader tuning curves and might be
expected to cluster faces based on viewpoint (pose) rather than face iden-
tity, given the low pixel overlap between successive views of the same face.
Further, because there are multiple gating units for each clustering unit, the
gating units might be expected to learn a more distributed representation
of faces.

To accommodate the one-to-many relationship between the clustering
and gating units, the cost function was modified so that each clustering unit
takes as its gating signal the average of the activations over the gating units
in the same module:

L =
n∑
α=1

log

 m∑
i=1

y(α)i
1
l

l∑
j=1

gij
(α)

 . (6.1)

As in the first network, we still have a single mixture of gaussian submodels,
with each clustering unit corresponding to a submodel. Now, the probability
over each submodel, i, given the inputs and contexts, is computed by aver-
aging the activations gij of gating units within the same module. As before,
the gating units received time-delayed, temporally blurred inputs from the
clustering layer. Unlike in the previous simulations, the gating units also
received time-delayed, temporally blurred inputs directly from the input
layer. This extra source of context was provided so that gating units in the
same module would have some basis for developing differential responses.

The clustering units’ connection weights were updated for 2000 iterations
with a fixed learning rate of 0.1 while the gating units’ connection weights
were initially held fixed. Typical response profiles for the clustering units
are shown in Figure 8. As predicted, these units exhibited broad face tuning
but relatively narrow pose tuning.

The gating units’ connection weights from the input layer were then
updated for 2000 further iterations with a fixed learning rate of 0.02. No
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Figure 7: The architecture used in the second set of simulations reported here.
The gating units received normalized, temporally blurred input from clustering
units in the same module and neighboring module(s), and direct connections
from the input layer. The connections from the clustering units to the gating units
had fixed weights of 0.6 for within-module connections, 0.2 for between-module
connections to the middle module, and 0.4 for between-module connections to
the end modules. The weights on the direct input connections to the gating layer
were fixed at zero, while the clustering layer was trained, and were subsequently
adapted during a second training phase.

Figure 8: Three clustering units’ normalized activations are plotted against face
identity (bottom left axis) and viewing angle (bottom right axis) of patterns.
Each graph shows the activations of a single unit over the entire set of training
patterns. Each clustering unit received contextual input from three gating units
(see Figure 5) and learned to respond to faces from a particular viewpoint,
independent of face identity.
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constraints were placed on these weights, so they could potentially grow
larger than the weights from the clustering to the gating layer. Networks
with different numbers of gating units per module (but always three or
four modules) were experimented with and produced qualitatively simi-
lar results. The gating units tended to respond to combinations of one or
more faces at similar poses. However, the responses were not convincingly
distributed. Rather, different gating units became selective for narrow, rel-
atively nonoverlapping regions of the face-pose space. To encourage the
gating units to develop more distributed responses, the time delay and blur-
ring from the direct input connections to the gating layer were removed.
Thus, like the clustering units, the gating units could now access only a sin-
gle time slice of the input at a given moment. As predicted, this decreased
the tendency for gating units to group faces of particular individuals over
time, resulting in more multimodal response profiles, as in Figure 9. In this
case, gating units in the same module (plotted in the same row in Figure 9)
tended to have similar pose tuning and multimodal, somewhat overlapping
face-tuning profiles. This architecture actually violates the conditional in-
dependence assumption about the input and context streams, by using the
same signal for both input and context. This would be of greater concern
if the clustering and gating layers were adapted simultaneously, in which
case they could achieve agreement in trivial ways, such as by attending to
only small subsets of their inputs. To address this issue of independence,
similar results were obtained in networks in which the clustering and gat-
ing layers were randomly connected to the input layer, which provided an
approximation to independence.2

To summarize our second set of simulations, we sought to extend our
basic findings by exploring several variations in the architecture that were
predicted to lead to more distributed representations of faces. In particular,
fewer modules were used, and there were multiple gating units per module.
As predicted, the clustering units became less tuned to individuals’ faces.
Instead, they developed pose tuning and were broadly selective to a wide
range of individuals. It was also predicted that the gating units would form
distributed codes for faces. However, although their tuning curves were
multimodal in face-pose space, they were not strongly overlapping, but
instead remained relatively local. This representation would be good for
recognizing general features common to many faces, but would not be as
appropriate for face classification as compared to that learned by the first
architecture.

2 This approximation is still not exact. A better solution would be to connect the clus-
tering and gating layers to physically different parts of the input. For example, the gating
units could be connected to the spatial context surrounding the input to the clustering
unit(s) in the same module.
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Figure 9: Twelve gating units’ activations, before normalization, are plotted
against face identity (bottom left axis) and viewing angle (bottom right axis) of
patterns. Each graph shows the activations of a single unit over the entire set
of training patterns. Units in the same row were trained to provide a common
contextual gating signal to a single clustering unit (see Figure 5). For the most
part, each has learned to respond to multiple faces from a narrow range of views.

7 Discussion

The simulation results with our model demonstrate that temporal context
can markedly alter the sort of features or classes learned by an unsuper-
vised network. When combined with appropriate architectural constraints,
a range of representations can be learned. But does this have anything to say
about self-organization in the cortex? In this section, we consider behavioral
and physiological lines of evidence in support of our model. Finally, several
related computational models are considered.

7.1 Empirical Evidence for the Use of Temporal Context. There is ev-
idence that single cells’ tuning curves exhibit complex temporal dynamics
(Ringach et al., 1997; De Angelis, Ohzawa, & Freeman, 1995). But are these
effects hard wired, or might temporal context play a role in the learning of
receptive fields? Physiological evidence from Miyashita (1988) would sup-
port the latter contention. Miyashita repeatedly exposed monkeys to a fixed
sequence of 97 randomly generated fractal images during a visual memory
task and subsequently recorded from cells in the anterior ventral tempo-
ral cortex. Many cells responded to several of the fractal patterns, and the
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grouping of patterns was based on temporal contiguity rather than geomet-
ric similarity. This is rather striking evidence for learning based on temporal
associations rather than pattern overlap.

Furthermore, recent behavioral evidence suggests that temporal context
is important to human learning about novel objects. Seergobin, Joordens,
and Becker (unpublished data) exposed experimental participants to se-
quences of images of faces of the same sort used in the simulations reported
here. In one condition, faces were viewed “coherently,” that is, in ordered
sequences from left to right or right to left. In another condition, faces were
viewed “incoherently,” that is, each face was presented in a scrambled se-
quence with the views randomly ordered. Participants demonstrated a sig-
nificant benefit in face matching from the more coherent temporal context
during study.3 Given that there may be differences in the way humans pro-
cess faces as compared to other types of objects (Bruce, 1997), Seergobin et al.
extended their results in a further set of experiments using static image se-
quences of novel, artificially generated bumpy objects resembling asteroids.
In this case, a similar advantage for coherent temporal context in implicit
learning was shown.

7.2 Justification for a Modular, Hierarchical Architecture. The hier-
archical, modular architecture shown in Figure 3 is motivated by several
features widely considered to be ubiquitous throughout all regions of the
neocortex: a laminar structure (see, e.g., Douglas & Martin, 1990) and a
functional organization into “cortical clusters.” As Calvin (1995, p. 269)
succinctly puts it, “The bottom layers are like a subcortical ‘out’ box, the
middle layer like an ‘in’ box, and the superficial layers somewhat like an
‘interoffice’ box connecting the columns and different cortical areas.” We
tentatively suggest a correspondence between the clustering units in our
model and layer IV cells, and between the gating units and the deep and su-
perficial layer cells. With respect to functional modularity, in many regions
of cortex, spatially nearby columns tend to cluster into functional groupings
with similar receptive field properties (see, e.g., Calvin, 1995), including vi-
sual area V2 (Levitt, Kiper, & Movshon, 1994) and inferotemporal cortex
(Tanaka, Fujita, Kobatake, Cheng, & Ito, 1993). We experimented with two
different means of inducing functional modularity in our model. In the first
set of simulations, subsets of clustering units shared a common gating unit
and learned to predict similar regions of the contextual space. Consequently,

3 One might then wonder whether fully animated video sequences would confer a
further benefit on object learning, over and above that of temporally coherent sequences
of static images. Interestingly, for the case of animated versus statically studied faces,
Bruce and colleagues found no such advantage in two different experiments (Christie &
Bruce, 1998; Bruce & Valentine, 1998). Note, however, that dynamic viewing at the time
of testing does improve face recognition performance (Christie & Bruce, 1998; Bruce &
Valentine, 1998).
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they became tuned to temporally coherent features: different views of the
same individual’s face. In the second set of simulations, subsets of gating
units shared a common clustering unit and learned to detect different con-
textual features that predicted a common region of the input space. In this
case, different gating units in the same module became specialized for sim-
ilar views but different faces. Further, clustering units in nearby modules
had partially overlapping contextual inputs. This resulted in a similarity of
function across neighboring modules: clustering units in adjacent modules
were selective for similar views. It remains to be seen which, if either, of these
architectures is a good model of cortical self-organization and modularity.

Another possibility is that the functionality of an entire module of cluster-
ing and gating units in our model could be computed by a single neuron. The
neuron would then require nonlinear interactions among synaptic inputs,
so that the context could act in a modulatory fashion, rather than as a pri-
mary driving stimulus. A number of models of cortical cell responses have
proposed multiplicative interactions between modulatory and primary in-
put sources (Nowlan & Sejnowski, 1993; Mel, 1994; Mundel, Dimitrov, &
Cowan, 1997; Pouget & Sejnowski, 1997).

7.3 Face Processing and Shape Recognition in the Cortex. The model
in its present implementation is not meant to be a complete account of the
way humans learn to recognize faces. Viewpoint-invariant recognition is
probably achieved, if at all, in a hierarchical, multistage system. In ongoing
work, we are exploring this possibility by training, in series, a sequence of
networks like the one shown in Figure 3, with progressively larger receptive
fields at each stage.

Oram and Perrett (1994) have proposed a roughly hierarchical, multi-
stage scheme for decomposing the ventral visual pathway into a functional
processing hierarchy. Of particular relevance to the results reported here is
their proposal for the organization of object recognition in the inferotempo-
ral (IT) cortex. A large body of physiological evidence supports the notion
that IT cells are responsible for complex shape coding. After Tanaka and col-
leagues (Tanaka et al., 1991), Oram and Perrett propose that object recogni-
tion is accomplished in a distributed network in IT (particularly the anterior
inferotemporal area, AIT) as follows: each module or column codes for a
particular shape class. A given object activates many modules, correspond-
ing to different complex visual features. Within a module, different cells
exhibit slightly different selectivities and can thereby signal more precisely
the stimulus features. For example, cells in a given column might all code
for a pair of small, round objects aligned horizontally. Within a column, dif-
ferent cells might further specialize for a pair of eyes or a pair of headlights.
Responses across many such columns, taken together, could thereby code
a great many different objects uniquely. Only under special circumstances
would a grandmother cell be devoted to recognizing a unique conjunction
of stimulus features.
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The network shown in Figure 7 learned a representation that is consistent,
at least in broad terms, with the scheme for representing objects proposed
by Tanaka et al. and Oram and Perrett. Units in the same module learned to
code for a particular class of stimuli: faces over some wide range of views.
Different gating units in the same module became further specialized to
detect particular features of different faces. These units were usually not
tuned to one specific face, but each tended to respond to several specific
individuals’ faces. A question for future research is whether the model pre-
sented here could encode different uncorrelated features, or different classes
of objects, across many different modules.

7.4 Related Work. Phillips, Kay, and Smyth (1995; Kay & Phillips, 1997)
have proposed a model of cortical self-organization they call coherent Info-
max that incorporates contextual modulation. In their model, the outputs
from one processing stream modulate the activity in another stream, while
the mutual information between the two streams is maximized. They view
this algorithm as a compromise between Imax (Becker & Hinton, 1992) and
Infomax (Linsker, 1988). A number of other unsupervised learning rules
have been proposed based on the assumption of temporally coherent in-
puts. Becker (1993) and Stone (1996) proposed learning algorithms that
maximize the mutual information in a neuron’s output at nearby points
in time. Földiák (1991) and Weinshall, Edelman, and Bülthoff (1990; Edel-
man & Weinshall, 1991) proposed variants of competitive learning that used
blurred outputs and time delays, respectively, to associate items over time.
Several investigators (Seergobin, 1996; Wallis & Rolls, 1997; Stewart Bartlett,
& Sejnowski, 1998) have shown that Földiák’s model, when applied to faces,
develops units with broad pose tuning. Temporal smoothing has also been
shown to broaden pose tuning to faces in feedforward backpropagation
networks (Becker, 1997) and in Hopfield-style attractor networks (Stewart
Bartlett & Sejnowski, 1997). O’Reilly and Johnson (1994) used feedback in-
hibition and excitation to achieve temporal smoothing and pose invariance
in a multilayer model that is perhaps most similar to the one proposed here.
Their network used excitatory feedback from the top-layer units to pools
of middle-layer units, so that position invariance was achieved to progres-
sively greater degrees in higher layers. O’Reilly and Johnson’s model could
be viewed as a more biologically constrained approximation to the more
formal learning model proposed here.

Hidden Markov models provide another way to implement the model
proposed here (Geoff Hinton, personal communication). However, current
techniques for fitting HMMs are intractable if state dependencies span arbi-
trarily long time intervals. Saul and Jordan (1996) have proposed an elegant
generalization of HMMs they call Boltzmann chains for modeling discrete
time series. In one special case, they show that the learning is tractable for
coupled parallel chains, that is, parallel discrete time series of correlated fea-
tures, coupled by common hidden variables. This case would correspond
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exactly to the one assumed here (see Figure 2c), if the temporal dependencies
were restricted to adjacent points in time.

One limitation of the model proposed here is that it does not provide a
complete account of the role of feedback between cortical layers. Although
top-down feedback could be viewed as just another source of context, and
thereby incorporated into the present model, the solution might not be glob-
ally optimal in a multistage system. The work of Hinton and colleagues on
the Helmholtz machine (Hinton & Zemel, 1994; Dayan, Hinton, Neal, &
Zemel, 1995) and Rao and Ballard’s extended Kalman filter model (Rao &
Ballard, 1997) provide two different solutions to this problem.

8 Conclusions

A “contextual input” stream was implemented in the simplest possible way
in the simulations reported here, using fixed delay lines and recurrent feed-
back. The model we have proposed provides for a very general way of
incorporating arbitrary contextual information and could equally well in-
tegrate other sources of input. A wide range of perceptual and cognitive
abilities could be modeled by a network that can learn features of its pri-
mary input in particular contexts. These include multisensor fusion, feature
segregation in object recognition using top-down cues, and semantic dis-
ambiguation in natural language understanding. Finally, our model may be
able to account for the interaction between multiple memory systems in the
brain. For example, it is widely believed that memories are stored rapidly in
the hippocampus and related brain structures, and more gradually stored
in the parahippocampal and neocortical areas (McClelland, McNaughton,
& O’Reilly, 1995). The manner in which information is represented in the
hippocampal system is undoubtedly very different from that of the cortex.
A major question is how the two systems interact. The model proposed
here may be able to explain how interactions between disparate informa-
tion sources such as the hippocampal and cortical codes are integrated into
a unified representation in the cortex. The output of the hippocampus, a
rapidly formed novel code, could be treated simply as another source of
context, to be integrated with bottom-up information received by various
cortical areas.
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