Personal tools
 
You are here: McMaster Institute for Music and the Mind > Publications > The time course of online trajectory corrections in memory-guided saccades

Brian A Richardson, Anusha Ratneswaran, James Lyons, and Ramesh Balasubramaniam (2011)

The time course of online trajectory corrections in memory-guided saccades

Experimental Brain Research, 212:457-69.

Recent investigations have revealed the kinematics of horizontal saccades are less variable near the end of the trajectory than during the course of execution. Converging evidence indicates that oculomotor networks use online sensorimotor feedback to correct for initial trajectory errors. It is also known that oculomotor networks express saccadic corrections with decreased efficiency when responses are made toward memorized locations. The present research investigated whether repetitive motor timekeeping influences online feedback-based corrections in predictive saccades. Predictive saccades are a subclass of memory-guided saccades and are observed when one makes series of timed saccades. We hypothesized that cueing predictive saccades in a sequence would facilitate the expression of trajectory corrections. Seven participants produced a number of single unpaced, visually guided saccades, and also sequences of timed predictive saccades. Kinematic and trajectory variability were used to measure the expression of online saccadic corrections at a number of time indices in saccade trajectories. In particular, we estimated the minimum time required to implement feedback-based corrections, which was consistently 37 ms. Our observations demonstrate that motor commands in predictive memory-guided saccades can be parameterized by spatial working memory and retain the accuracy of online trajectory corrections typically associated with visually guided behavior. In contrast, untimed memory-guided saccades exhibited diminished kinematic evidence for online corrections. We conclude that motor timekeeping and sequencing contributed to efficient saccadic corrections. These results contribute to an evolving view of the interactions between motor planning and spatial working memory, as they relate to oculomotor control.

spatial working memory, trajectory correction, motor, memory